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The thermal conductivity and shear viscosity of dense nuclear matter, along with the corresponding shear 
viscosity timescale of canonical neutron stars (NSs), are investigated, where the effect of Fermi surface 
depletion (i.e., the Z-factor effect) induced by the nucleon-nucleon correlation is taken into account. The 
factors which are responsible for the transport coefficients, including the equation of state for building 
the stellar structure, nucleon effective masses, in-medium cross sections, and the Z-factor at Fermi 
surfaces, are all calculated in the framework of the Brueckner theory. The Fermi surface depletion is 
found to enhance the transport coefficients by several times at high densities, which is more favorable to 
damping the gravitational-wave-driven r-mode instability of NSs. Yet, the onset of the Z-factor-quenched 
neutron triplet superfluidity provides the opposite effects, which can be much more significant than the 
above mentioned Z-factor effect itself. Therefore, different from the previous understanding, the nucleon 
shear viscosity is still smaller than the lepton one in the superfluid NS matter at low temperatures. 
Accordingly, the shear viscosity cannot stabilize canonical NSs against r-mode oscillations even at quite 
low core temperatures 106 K.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
As a class of compact objects, neutron stars (NSs) with typ-
ical mass M ∼ 1.4M� and radii R ∼ 10 km, contain extreme 
neutron-rich matter at supranuclear density in their interiors. In-
terestingly, they have many extreme features that cannot be pro-
duced in terrestrial laboratories, such as extremely strong magnetic 
field, superstrong gravitational field, extremely high density, su-
perfluid matter and superprecise spin period [1], suggesting their 
importance for fundamental physics. These intriguing features have 
drawn great interest for researchers of various branches of con-
temporary physics and astronomy since the discovery of pulsars 
(rapidly rotating NSs) in 1967.

Due to the dense matter with large isospin asymmetry inside 
NSs, a great deal of attention has been paid to the recent astro-
nomical observations that can be used to uncover the knowledge 
of the NS interior. For instance, the observations of stellar cooling 
enable one to constrain the equation of state (EOS) of dense mat-
ter, superfluidity and transport properties, in combination with in-
dispensable theoretical analysis [2–8]. Moreover, a rapidly rotating 
NS is regarded as a gravitational wave source due to r-mode in-
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stability. The r-mode is a non-radial oscillation mode with Coriolis 
force as restoring force, which leads to the gravitational wave radi-
ation in rapidly rotating NSs due to the Chandrasekhar-Friedmann-
Schutz instability [9–11] and thus prevents the NSs from reaching 
their Kepler rotational frequency [12,13]. The gravitational radi-
ation is in turn able to excite r modes in NS core and hence 
enhances their oscillation amplitudes, and it is particularly inter-
esting from the perspective of the gravitational wave observations 
with ground-based facilities. The gravitational wave signal from the 
r-mode oscillation, if detectable in the future, could help one to 
probe the dense matter properties inside NSs.

The reliable knowledge about transport coefficients of dense 
matter is crucial for understanding the stellar thermal evolution 
and r-mode-instability induced gravitational radiation. The ther-
mal conductivity which measures the ability to conduct the heat, 
is an important input for modeling NS cooling [14,15]. The shear 
viscosity is the primary damping mechanism that hinders the 
gravitational-wave-driven r-mode instability of rapidly rotating NSs 
at low temperatures (< 109 K) [16–18]. These two transport coef-
ficients have been calculated by several authors based on the for-
mulism derived by Abrikosov and Khalatnikov (AK) from the Lan-
dau kinetic equations for a single-component system [19], where 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the required in-medium nucleon-nucleon cross sections are ob-
tained by employing the correlated basis function method and 
the Brueckner-Hartree-Fock (BHF) approach with realistic nucleon-
nucleon interactions [20–23]. In the present work, within the AK 
framework, we calculate the transport coefficients by adopting the 
Brueckner theory with the inclusion of the effect of Fermi surface 
depletion. The bulk viscosity is expected to become the dominant 
dissipation mechanism for newborn NSs with rather high temper-
atures (T > 1010 K), and we do not consider this situation here.

It is well-known that, the momentum distribution for a perfect 
Fermi gas follows a right-angle distribution at zero-temperature, 
namely the well-known Fermi-Dirac distribution. Yet, owing to the 
short-range repulsive core and tensor interaction (collectively re-
ferred to as short-range correlation in some references), the system 
deviates from the typical profile of an ideal degenerate Fermi gas 
featured by a high-momentum tail [24–27], and as a result a Fermi 
surface depletion may appear. The Z -factor measures such a Fermi 
surface depletion. The correlation between nucleons or its induced 
Z -factor has far-reaching impact on many issues such as nuclear 
structure [28,29], superfluidity of dense nuclear matter [30–32], NS 
cooling [31] and the European Muon Collaboration effect [34,33], 
highlighting its fundamental importance in nuclear physics and NS 
physics. For instance, Dong et al. have shown that the superfluid 
gap of β-stable neutron star matter is strongly quenched by the 
Z factor within the generalized BCS theory [30,31]. The neutrino 
emissivity for NS cooling due to direct Urca, modified Urca pro-
cesses are also reduced by the Z -factor, and therefore the cooling 
rates of young NSs are considerably slowed [31].

In this work, the roles of the Z -factor in the thermal conduc-
tivity and shear viscosity are clarified based on the AK formulism. 
The neutron triplet superfluidity in NS core quenched by the Z -
factor effect is introduced to examine its effects on the viscosity of 
β-stable NS matter. Then we calculate the shear viscosity timescale 
and gravitation-wave-driven r-mode growth timescale of canonical 
NSs to explore whether the shear viscosity is sufficiently strong to 
damp the r-mode instability. The required in-medium cross sec-
tions and nucleon effective masses to calculate transport coeffi-
cients, and the Z -factor at the Fermi surface, together with the 
EOS to establish the NS structure, are all obtained in an unified 
framework, i.e., the Brueckner theory with AV18 two-body interac-
tion plus a microscopic three-body force [35,36]. We should stress 
here that in the calculation the exact treatment of total momen-
tum is adopted to obtain more reliable results [37].

The Z -factor that measures the effect of Fermi surface depletion 
is given by

Z(k) =
[

1 − ∂�(k,ω)

∂ω

]−1

ω=ε(k)

(1)

with the single-particle energy ε(k). Where �(k, ω) is the self-
energy versus momentum k and energy ω. The Z factor at the 
Fermi surface, labeled Z F (0 < Z F < 1), is equal to the disconti-
nuity of the occupation number at the Fermi surface, according to 
the Migdal-Luttinger theorem [38]. Once the nucleon-nucleon cor-
relation is included, the nucleon momentum distribution is given 
as

n(k) =
ˆ

dω

2π
S(k,ω)n0(ω) (2)

at finite temperature T [39], where ω is the energy. n0(ω) =
1/[1 +exp(

ω−μ
kB T )] is the well-known Fermi-Dirac distribution func-

tion under temperature T and chemical potential μ. The spectral 
function S(k, ω) can be expressed as [35]

S(k,ω) ≈ Z F δ(ω − ε(kF )),k ≈ kF , (3)
2

when momentum k is extremely close to the Fermi momentum kF . 
Consequently, the momentum distribution near the Fermi surface 
is approximated by [31]

n(x) ≈ Z F n0(x),k ≈ kF , (4)

with x = (ε(k) − μ)/(kB T ). Hereafter we take x as variable in the 
Fermi-Dirac distribution for convenience. We stress that this ap-
proximation is only valid when k is extremely close to the Fermi 
surface. The nucleon-nucleon correlation quenches the occupation 
probability by a factor Z F at Fermi surface kF , and thus it hinders 
particle transitions around the Fermi surface.

To embody the effects of nucleonic Fermi surface depletion in 
the calculation of the kinetic coefficients, we extend the Landau ki-
netic equation by including the Z -factor in the collision integral. In 
the AK framework, at temperature T , the collision integral without 
the Z -factor effect takes the form of [40]

I0
1i = −m∗

i k2
B T 2

8π4h̄6

¨
dx2dx3n0(x1)n

0(x2)[1 − n0(x3)]

× [1 − n0(x1 + x2 − x3)]
∑

j

m∗2
j

¨
d	

4π

dφ2

2π

× W ij(θ,φ)βi j

1 + δi j
[ψ(p1) + ψ(p2) − ψ(p3) − ψ(p4)], (5)

where m∗ is the effective mass of nucleon i or j. And the small 
quantities ψ(p) measure the departure from equilibrium state. 
Here the nucleon-nucleon scattering is limited to the Fermi sur-
face. For convenience, one can assume 1 and 3 (2 and 4) are the 
same component, i.e., |p1| = |p3| = pi (|p2| = |p4| = p j). And the 
transition probability W ij from two quasiparticle state |p1, p2〉 to 
state |p3, p4〉, depends only on θ and φ (d	 = sin θdθdφ), where 
θ is the angle between p1 and p2, and φ is the angle between the 
p1-p2 plane and p3-p4 plane. βi j = p j/(p2

i + p2
j + 2pi p j cos θ)1/2

reduces to [2 cos(θ/2)]−1 for i = j. φ2 is the azimuthal angle of p2
with respect to p1. The factor (1 +δi j)

−1 takes into account double 
counting of the final states in the case of like particles.

Since the temperature T we discussed is several orders of mag-
nitude lower than the nucleonic Fermi temperatures (the nucleons 
are strong degenerate), the main contribution to the above integral 
comes from the very narrow regions of momentum space near the 
corresponding Fermi surfaces kF , just as the calculation of neu-
trino emissivity in Ref. [41]. If the Z -factor effect is included, in 
the above collision integral, 1 − n0(x) (and n0(x)) representing the 
unoccupied (and occupied) state due to the temperature, should be 
replaced by n(x)|T =0 − n(x) = Z F [1 − n0(x)] (and Z F n0(x)) when 
the Z -factor effect is included. The collision integral is just at-
tributed to thermal excitations of particles located in a very narrow 
region of ∼ kB T close to their Fermi surfaces, and the state with 
|ε(k) −ε(kF )| � kB T plays no role for the collision integral because 
the thermal energy kB T is too low to excite those states. Therefore, 
the high momentum tail makes no contribution to the collision 
integral, just as the influence of the Fermi surface depletion on 
neutrino emissivity processes discussed in detail in Ref. [31]. Con-
sequently, the collision integral turns into

I1i = −
∑

j

Z 2
F i Z 2

F jm
∗
i m∗2

j k2
B T 2

8π4h̄6

¨
dx2dx3n0(x1)n

0(x2)

× [1 − n0(x3)][1 − n0(x1 + x2 − x3)]
¨

d	

4π

dφ2

2π

× W ijβi j

1 + δ
[ψ(p1) + ψ(p2) − ψ(p3) − ψ(p4)]. (6)
i j
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Fig. 1. (upper panel) Energy per particle in symmetric matter, pure neutron mat-
ter, and β-stable matter as a function of nucleonic density from the BHF approach. 
The square shows the position of calculated saturation point. (lower panel) Density-
dependent effective mass at Fermi surfaces for three different nuclear matter con-
figurations.

Moreover, the driving term of the Landau kinetic equation, which 
is proportional to ∂n

∂x at equilibrium state, provides a Z F as well. 
Therefore, one can include the Z -factor effect in the calculation of 
the transport coefficients by adopting Z F both in the collision inte-
gral and the driving term by following the derivations in Ref. [40]. 
For example, the collision integral reduces to a simple formula of 
I1i = Z 4

F I0
1i for pure neutron matter. One should note that the mo-

mentum (energy) flux corresponding to the shear viscosity (ther-
mal conductivity) also includes ∂n

∂x . Consequently, the shear viscos-
ity (thermal conductivity) is given by η = η0/Z 2

F (κ = κ0/Z 2
F ) for 

pure neutron matter, where η0 (κ0) is the corresponding transport 
coefficient without the inclusion of the Z -factor effect.

Within the BHF approach, the EOSs of symmetric nuclear mat-
ter (β = 0), pure neutron matter (β = 1), and β-stable matter, 
where β = (ρn − ρp)/(ρn + ρp) denotes the isospin asymmetry 
with the neutron (proton) number densities ρn (ρp), are displayed 
in Fig. 1(upper panel). The solid square shows the calculated satu-
ration point of symmetric matter which is marginally in agreement 
with the empirical value due to the introducing of three-body 
force. The proton fraction in β-stable matter is determined by the 
density-dependent symmetry energy, i.e., the isospin-dependent 
part of the EOS. The EOSs for pure neutron matter and β-stable 
matter show a distinct difference that becomes more and more 
visible at high densities, indicating the non-negligible proton frac-
tion in NS matter. The NS interior is assumed to be composed of 
nucleons, electrons and possible muons. With the conditions of 
electric neutrality and β-equilibrium, the fractions of leptons (elec-
trons and muons as degenerate ideal gas) and their contributions 
to the energy density ε(ρ) and pressure p(ρ) can be determined 
uniquely. With the obtained ε(ρ) and p(ρ) of the core matter and 
the EOS from Baym, Pethick, and Sutherland (BPS) [42] for crust 
matter as inputs, the stellar structure, e.g., the density profile ρ(r)
of a static and spherically symmetric NS, is achieved by solving 
the Tolman-Oppenheimer-Volkov (TOV) equation. The established 
stellar structure is essential for the final estimation of the shear 
viscosity timescale and r-mode growth time scale of NSs.
3

Fig. 2. (upper panel) Differential cross sections of neutron-neutron scattering in 
symmetric matter, pure neutron matter, and β-stable matter, taking ρ = 0.34 fm−3

and center-of-mass energy Ec.m. = 75 MeV as an example. (lower panel) The corre-
sponding total cross sections versus Ec.m.

The nucleonic effective mass m∗ is defined from the single-
particle energy ε(p) by the relation m∗ = kF (∂ε(k)/∂k)−1 |k=kF . It 
reduces the density of states at the Fermi surface with respect 
to non-interacting Fermi gas since it is usually smaller than the 
free mass. As Ref. [23,43], the rearrangement contribution of three-
body force is not included here. The calculated effective mass with 
the BHF approximation is presented in Fig. 1(lower panel). The 
neutron effective mass of pure neutron matter is not much dif-
ferent from that of β-stable matter, but is distinctly larger than 
that of symmetric matter at the same density.

We calculate the in-medium differential sections within the 
BHF method for symmetric matter, pure neutron matter and β-
stable matter, taking the neutron-neutron scattering at density of 
ρ = 0.34 fm−3 (twice the saturation density) as an example, as 
shown in Fig. 2. The free-space cross section is also shown for 
comparison. The in-medium effect leads to a noticeable suppres-
sion of the cross sections, as other calculations within microscopic 
nuclear many-body approaches, suggesting the important role of 
the medium effect. Our calculated differential cross sections as 
functions of center-of-mass scattering angle (and also the total 
cross sections versus center-of-mass energy Ec.m.) have the same 
shape as that in Ref. [23] for density ρ = 0.35 fm−3, although dif-
ferent three-body forces are used. We would like to stress that, 
the inclusion of the three-body force increases the cross section at 
high Ec.m., which is in agreement with the conclusion of Ref. [23], 
but disagrees with the results in Ref. [22,44].

Fig. 3 exhibits the calculated Z F at Fermi surfaces for three 
different nuclear matter configurations by employing the Brueck-
ner theory where the self-energy is expanded to the 2nd-order, 
i.e., � = �1 + �2. The momentum distribution featured by a high 
momentum tail and vacant position below the Fermi surface, is il-
lustrated in the inset. The behavior of Z F for symmetric matter is 
consistent with the result in Refs. [31,45]. The Z -factor is caused 
by the short-range repulsion core and tensor force. The tensor 
force is dominant at low densities while the short-range repulsion 
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Fig. 3. Density-dependent Z -factor at Fermi surfaces in symmetric matter, pure neu-
tron matter, and β-stable matter. The inset presents a schematic illustration of the 
Fermi surface depletion induced by the nucleon-nucleon correlation.

is dominant at high densities. The nonmonotonic behavior of Z F

for symmetric matter and β-stable matter displayed in Fig. 3 is ex-
actly the results of competition between these two effects, and the 
Z F is small both at very low and very high densities. On the other 
hand, the Z F exhibits a strong isospin dependence. At a given total 
nucleon density, the Z F of symmetric matter is smaller obviously 
than that of pure neutron matter, that is, the correlation in the 
former is stronger than that in the later, because the 3 S D1 ten-
sor interaction component between neutrons and protons is quite 
strong in symmetric matter but is completely absent in pure neu-
tron matter. Namely the pure neutron matter is much closer to the 
ideal degenerate Fermi gas, as pointed out in Ref. [29]. The results 
displayed in Fig. 3 will be applied in the following calculations of 
transport coefficients.

When combining all the results that have been discussed above, 
we can now compute the density-dependent shear viscosity under 
various temperatures stemming from nucleon-nucleon collisions. 
The phase space is quenched in Eq. (2) because of the deple-
tion of Fermi surface, and therefore the thermal conductivity κ
and shear viscosity η are increased. The calculated temperature-
independent combinations κT and ηT 2 versus density are plotted 
in Fig. 4, respectively, without and with the inclusion of the Z -
factor effect. The lepton (electron and muon) shear viscosity ηeμ

and thermal conductivity κeμ mediated by collisions of leptons 
with charged particles in electrically neutral NS matter, are taken 
from Ref. [46]. Since the nucleon shear viscosity ηN is mediated 
by nucleon-nucleon collisions via strong nuclear force, the ηN and 
ηeμ can be treated independently. Yet, the ηeμ (κeμ) has differ-
ent temperature-dependent behavior as ηN (κN ). So here we show 
three cases: T = 107, 108, and 109 K. The relation between ηN

and ηeμ is temperature dependent, that is, ηN becomes more and 
more important as temperature decreases. The proton contribution 
to the shear viscosity can be neglected safely since the proton con-
tribution is just 15% even at high density of ρ = 0.6 fm−3.

The Z -factor effect enhances the nucleonic κ and η for the 
three nuclear matter configurations, in particular at high densi-
ties. For example, at the density of ρ = 0.6 fm−3, the κN and ηN

can be enhanced by about three to four times by the Z -factor ef-
fect. The nucleonic thermal conductivity is much larger than the 
lepton ones for all densities of NS matter and temperatures of in-
terest. Yet, the situation is different for shear viscosity. Without the 
Z -factor effect (Z = 1), the primary contribution to the shear vis-
cosity η = ηN +ηeμ comes from the lepton scattering which is just 
exceeds by nucleon scattering at low densities, in agreement with 
the conclusion of Ref. [23]. Once the Z -factor is taken into account, 
the ηN and ηeμ become comparable at intermediate densities, and 
the ηN is about four times larger than ηeμ at crust-core transition 
density ρ ≈ 0.08 fm−3.
4

It is widely believed that superfluidity plays a crucial role in 
NS dynamics, such as NS cooling and the observed pulsar glitch. 
It draws wide attention in communities of nuclear physics and NS 
physics in particular after the rapid cooling of the NS in Cassiopeia 
A was observed. The strong nuclear force provides several attrac-
tive channels between nucleons in which superfluidity is possible 
[47–49]. The neutrons dripped out from the neutron-rich nuclei 
in NS inner crust, are expected to be paired in a 1 S0 singlet state 
with energy gap of ∼ 1.5 MeV [50]. The proton gas is so dilute that 
the proton 1 S0 superconductivity (superfluidity of charged parti-
cles) may survive until deep inside the star but the neutron 1 S0

superfluidity vanishes because the nuclear interaction in the 1 S0

channel becomes repulsive at short distances for high neutron den-
sity. Nevertheless, at high density, neutron-neutron coupling in the 
3 P F2 anisotropic pairing state could appear owing to the attractive 
component of the nuclear interaction in this coupling channel. The 
coupling between the 3 P2 and 3 F2 states is attributed to tensor 
force. This neutron 3 P F2 superfluidity is of great interest because 
it was employed to explain the rapid cooling of the NS in Cas-
siopeia A [3]. However, the superfluidity may reduced significantly 
by the nucleon-nucleon correlation [30,31,51]. By performing fit-
tings with several parameters, the density-dependent gap for the 
neutron 3 P F2 superfluidity of β-stable matter is given by [52]

�n(ρ) = (0.943ρ − 0.050)exp

[
−

( ρ

0.177

)1.665
]

, (7)

with a peak value of about 0.04 MeV at ρ = 0.17 fm−3. The proton 
1 S0 superfluid gap exists in a rather narrow region and is much 
smaller than the neutron 3 P F2 superfluid gap as stressed in [52]. 
In addition, the proton fraction is much smaller than the neutron 
one for β-stable NS matter. Therefore, we do not consider it in 
the present work. Here we only focus on the effects of neutron 
triplet superfluidity on shear viscosity. As mentioned in Ref. [53], 
we introduce a suppression factor to estimate the nucleon shear 
viscosity via η(SF)

N ≈ RnηN , where Rn is written as [53]

Rn �
[

0.9543 +
√

0.045692 + (0.6971y)2

]3

·exp

[
0.1148 −

√
0.11482 + 4y2

]
(8)

with y = �(T )/T . �(T ) is the temperature-dependent energy gap, 
and the critical temperature is Tc = 0.57�(T = 0). The ηN due to 
neutron-neutron scattering drops exponentially because of sharp 
decrease of the number of momentum carriers near the Fermi sur-
face.

The ηT 2 of each component as a function of density under 
different temperatures T in the presence of neutron 3 P F2 super-
fluidity are displayed in Fig. 5. If the core temperatures of NSs 
are higher than ∼ 2 × 108 K, the neutron 3 P F2 superfluidity dis-
appears. The neutrons in stellar core become superfluid as soon 
as the NS cools below the critical temperatures, and accordingly 
the neutron-neutron scattering is strongly depressed and the main 
contribution to the shear viscosity comes from electron scatter-
ing processes. As a result, the Z -factor-quenched superfluid effect 
plays an opposite role compared with the Z -factor effect itself, and 
intriguingly it can be much more significant. For instance, at the 
temperature T = 5 × 107 K, the nucleon shear viscosity ηN is re-
duced by about six orders of magnitude at ρ = 0.17 fm−3, and this 
suppression is stronger at lower temperatures. It was concluded in 
other references such as [18] that, at low temperatures T < 107

K, the contribution to the shear viscosity from the neutron scat-
tering is more important than the lepton scattering. However, the 
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Fig. 4. Thermal conductivity κ (upper panel) and shear viscosity η (lower panel) of nucleons and leptons as a function of density in symmetric matter, pure neutron matter, 
and β-stable matter. The nucleonic κN and ηN are calculated with the help of BHF approach without and with the inclusion of Z -factors.
Fig. 5. Shear viscosity stemming from nucleon-nucleon scattering as a function of 
density in β-stable matter with the inclusion of neutron triplet superfluidity.

ηeμ is still larger than ηN in the presence of such neutron triplet 
superfluidity. For example, at temperature T = 107 K, the ηN of 
the nucleon scattering can be neglected at density ρ < 0.5 fm−3

in superfluid matter.
After the stellar structure is established by solving the TOV 

equation with the BHF EOS as an input, the time scales of shear 
viscosity and of gravitation-radiation-driven growth of r-mode for 
1.4M� canonical NSs are calculated. The overall time scale is 
1/τ = −1/τGW + 1/τη , and if angular-velocity-dependent τGW is 
smaller than temperature-dependent τη , the r-mode amplitude 
will exponentially grow, resulting in r-mode instability. The equa-
tion of 1/τ = 0 determines the critical frequency in frequency-
temperature space, above which is the usually referred to as the 
r-mode instability window [54,55].

Table 1 lists the calculated shear viscosity τη and r-mode 
growth time scale τGW for canonical NSs. In non-superfluid NSs, 
the nucleon-nucleon scattering is indeed the dominant dissipa-
tion mechanism at low temperatures. If the superfluid effect is 
included, the situation is completely opposite. The ηN becomes 
less and less important and even negligible as temperature de-
5

Table 1
The calculated shear viscosity time scale τη , compared with 
gravitation-radiation-driven r-mode time scale τGW = 196 s for 
canonical neutron stars rotating at 716 Hz. The results with and 
without the neutron triplet superfluidity (SF) are listed, and the 
weights of the nucleon contribution are present in the brackets.

Temperature (K) τ nSF
η (s) τ SF

η (s)

106 402 (66%) 1200 (0%)
107 2.99 × 104 (50%) 4.38 × 104 (9%)
108 2.05 × 106 (34%) 2.26 × 106 (27%)
109 1.38 × 108 (23%) 1.07 × 108 (23%)

creases. The τη is enlarged because of the superfluid effect, indi-
cating weaker shear viscosity damping. It is generally believed that 
the r-mode instability limits the rotating angular velocity of accre-
tion millisecond pulsars. At present, the fastest spinning pulsar is 
PSR J1748-2446ad spinning at 716 Hz [56], and its correspond-
ing r-mode growth time scale τGW is 196 s if MTOV = 1.4M� is 
assumed. At low temperatures T = 106 K, the shear viscosity τη

is 402 Hz for nonsuperfluid NS core matter which is compara-
ble with the τGW, and the weight of nucleonic contribution is as 
large as 66%. However, if the superfluidity is taken into account, 
the nucleon-nucleon scattering does not contribute to the τη at 
such low temperature, and the τη is much larger than the τGW
and hence the shear viscosity is not much help to damp the r-
mode instability. Some authors proposed that the viscous dissipa-
tion at the viscous boundary layer of perfectly rigid crust and fluid 
core is the primary damping mechanism. However, it is questioned 
if the core-crust boundary is defined by a continuous transition 
from non-uniform matter to uniform matter through “nuclear pas-
ta” phases [57] and consequently the viscous boundary layer is 
smeared out [58].

In order to more clearly reveal the roles of the Z -factor and 
superfluid effects on the r-mode instability, the calculated r-mode 
instability critical curves are presented in Fig. 6. The Z -factor ef-
fect is conducive to damping the gravitational-wave-driven r-mode 
growth of NSs, in particular at low temperatures. However, the 
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Fig. 6. The calculated r-mode instability critical curves without the superfluidity 
(SF) and Z -factor, with Z-factor only, with both the Z -factor and neutron triplet 
superfluidity, are shown for comparison.

neutron triplet superfluidity plays an opposite role and is more 
significant. At temperatures higher than ∼ 108 K, both of the two 
effects are weak, which is because the neutron-neutron scattering 
contributes secondary to shear viscosity and the superfluidity is al-
most vanishes at such temperatures. The core temperature of NSs 
in low mass X-ray binaries is estimated to be (1 ∼ 5) × 108 K [59]
and 107 ∼ 108 K if the direct Urca process opens [52], therefore the 
shear viscosity cannot be expected to stabilize NSs against r-mode 
oscillations in practical situation. Additional damping mechanisms 
perhaps are required.

In summary, the Z -factor effects on the thermal conductivity 
and shear viscosity have been calculated based on the AK frame-
work, where the Z -factor at Fermi surfaces (Z F ), the in-medium 
cross sections, nucleon effective masses, and the EOS of NS matter, 
are calculated by using the Brueckner theory with the two-body 
AV18 interaction plus microscopic three-body force. The nucleon-
nucleon correlations, induced by the effects of short-range repul-
sion and tensor component of nuclear force, give rise to the Fermi 
surface depletion, i.e., the Z -factor effect. The calculated Z F of 
neutrons and protons at Fermi surfaces presents a strong isospin 
dependence due to the strong neutron-proton 3 S D1 tensor inter-
action. The two transport coefficients are enlarged by several times 
for symmetric matter, pure neutron matter and β-stable matter. 
The nucleonic thermal conductivity κN is much more important 
than lepton ones for different densities and temperatures that we 
considered here, whether or not this Z -factor effect is included. 
As temperature decreases, the nucleon shear viscosity ηN becomes 
more and more important with respect to the lepton contribution 
ηeμ . If we take into account the Z -factor effect, the ηN may be-
come comparable with ηeμ at intermediate densities, and larger 
than ηeμ at low densities. As concluded in the previous works 
[30,31], the Z -factor effect suppresses the proton 1 S0 and neu-
tron 3 P F2 superfluidity strongly, and the proton 1 S0 superfluidity 
almost vanishes. Contrary to the role of Z -factor itself, neutron su-
perfluidity is able to reduce the shear viscosity significantly (by 
several orders of magnitude) when the temperature drops below 
the critical temperature. As a result, the contribution to the shear 
viscosity from the lepton scattering is still more important than 
that from the nucleon scattering at low temperature for the den-
sities of interest in superfluid matter. Finally, the shear viscosity 
time scales τη along with the time scales τGW of r-mode growth 
due to the emission of gravitational waves for canonical NSs are 
calculated. At low temperatures, the nucleon-nucleon scattering 
indeed contributes mainly to the shear viscosity time scale τη . 
However, if the Z -factor-quenched superfluidity is present, it is 
less important and even negligible. In a word, the appearance of 
superfluidity is not favorable to damping the r-mode instability of 
NSs. The calculated τη is much larger than the τGW and hence the 
shear viscosity is not able to damp the r-mode instability even 
for very cold NSs with core temperature of 106 K. The present 
6

work stretches our understanding of the r-mode instability of pul-
sar physics.
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